EDITORIAL:

Editor: Swiss Neutron Scattering Society

Board for the Period October 2009—October 2012:
President: Prof. Dr. Henrik Ronnow henrik.ronnow@epfl.ch
Board Members: Dr. A. Stradner anna.stradner@unifr.ch
Dr. M. Kenzelmann michel.kenzelmann@psi.ch
Secretary: Dr. U. Gasser urs.gasser@psi.ch
Honorary Members: Prof. Dr. W. Hälg, ETH Zürich
Prof. Dr. K.A. Müller, IBM Rüschlikon and Univ. Zürich
Prof. Dr. A. Furrer, ETH Zürich and Paul Scherrer Institut
Auditors: Dr. K. Krämer, University of Berne
Dr. M. Zolliker, Paul Scherrer Institut
Address: Sekretariat SGN/SSDN
c/o Paul Scherrer Institut
WLGA/018
CH-5232 Villigen PSI
phone: +41-(0)56 - 310 4666
fax: +41-(0)56 - 310 3294
www: http://sgn.web.psi.ch
Bank Account: Postfinance: 50-70723-6 (BIC: POFICHBE)
IBAN: CH39 0900 0000 5007 0723 6
Printing: Paul Scherrer Institut
Circulation: 1600, 2 numbers per year
Copyright: SGN/SSDN and the respective authors

ON THE COVER:
Structure and neutron powder diffraction pattern of YbBr2 in the SrI2 phase,
see related article by K. Krämer, D. Biner, and L. Keller.
Contents

2 The President’s Page

4 Phase Transitions of YbBr$_2$

11 Erwin Félix Lewy-Bertaut Prize

12 Walter Hälg Prize 2011

13 Announcements

15 Joint User’s Meeting at PSI (JUM@P) 2011

16 Conferences
Welcome to this latest issue of Neutron News.

Picking up from where I finished the last president’s page – namely welcoming Dr. Christian Rüegg back to Switzerland in the role as head of the Laboratory for Neutron Scattering at PSI, I can now continue by congratulating him as recipient of the Fourth Erwin Félix Lewy-Bertaut Prize, which is awarded jointly by the European Crystallographic Association (ECA) and The European Neutron Scattering Association (ENSA). He receives this honour for outstanding contributions to the science of low-dimensional spin systems and quantum phase transitions. The announcement can be found on the webpage of the European Neutron Scattering Association (http://neutron.neutron-eu.net/nensam), which also reveals that the latest winner of the Walter Hälg Prize is Dr. Gerry Lander. In addition to his many scientific achievements – most notably in the field of actinide magnetism, Gerry was instrumental for the pioneering role of the Intense Neutron Pulsed Source (IPNS) at Argonne National Laboratory. IPNS was the world’s first pulsed neutron user facility, and as such played an important part towards the new and future spallation sources that are currently making neutron scattering an attractive and productive field of research.

The European Spallation Source (ESS) project continues its progress, and it is important all neutron scatterers in Europe continue their support for this project. The design update phase has already brought several choices about machine specifications and technological solutions. Meanwhile the instrumentation specifications have been kick-started with the negotiation of instrument development packages to be contributed from institutes around Europe. Notably, German neutron institutes have received funding to contribute a number of work packages. The
Swiss-Danish initiative mentioned in the previous Neutron News has progressed far, resulting in the description of 5 work-packages for instrument or instrumentation-technology design work. These include: A crystal chopper spectrometer; a reflectometer; a compact ‘BioSANS’; a novel hybrid imaging+diffraction concept; and dedicated neutron optics. This suite has been chosen to span the usage patterns and hence needs of Swiss neutron scatterers, and simultaneously corresponds to where Switzerland possesses particular instrumentation expertise. We welcome any SGN members wishing to contribute to or discuss these topics to contact us.

Of other news from the ENSA meeting in Budapest this spring, I can mention that it was decided that the 2015 European Conference on Neutron Scattering will take place in Zaragoza, Spain. And finally, concerning the issue of lacking world supply of 3He, which is used in detectors (of which a lot are needed with new instruments and sources in the works), for instance we have heard encouraging progress from a collaboration between a number of institutes about alternatives in the form of 10B based detectors. Prototypes up to 10x10cm in size (layers of thin films) are achieving efficiencies up to 60–65% at wavelengths of 2.5Å. This effort is largely driven by the significant needs at new facilities, but new successful detector technologies will of course benefit all neutron facilities including our home source at PSI.

Henrik M. Ronnow
The crystalline phases of YbBr$_2$ were investigated by powder neutron diffraction over its whole solid state temperature range. The low temperature SrI$_2$ phase is observed up to 550 K, the α-PbO$_2$ phase between 260 K and 750 K, the CaCl$_2$ phase between 690 K and 790 K, and the rutile phase from 790 K to the melting point at 955 K (682°C). All phase transitions are 1$^{\text{st}}$ order, except for the 2$^{\text{nd}}$ order CaCl$_2$ to rutile transition. Differential scanning calorimetry yields the transition energies and confirmed the transition temperatures from neutron experiments.

INTRODUCTION

Experiments under non-ambient conditions such as temperature, pressure, or magnetic field are among the strengths of neutron scattering. Here, we report about temperature dependent neutron diffraction to characterize the solid phases of YbBr$_2$.

The divalent state of ytterbium with its 4f14 closed shell electron configuration is, after europium, the second most stable among the lanthanides. A comprehensive review on the chemistry of reduced rare-earth halides was published by Meyer [1]. Yb$^{2+}$ chlorides were known since the pioneering work by Klemm et al. [2]. Bärnighausen and coworkers investigated divalent lanthanide bromides. They determined the structure of YbBr$_2$ and found its high temperature phases [3,4]. At room temperature YbBr$_2$ adopts the SrI$_2$ structure which is followed by the α-PbO$_2$, CaCl$_2$, and rutile phases up to the melting point. However, the earlier x-ray diffraction work on quenched crystals was affected by the crystal quality and contemporary technical limitations prohibited high resolution structure refinements.

In our search for new scintillator materials we investigated several AX$_2$ compounds where A is a divalent cation and X a halide ion. Efforts in scintillator research have increased during the last decade. Out of the very diverse applications for scintillators just two fields should be mentioned. A growing demand for security controls in international travel and...
trading is obvious. Continuous progress in medical diagnostics requires new scintillators with higher resolution, faster imaging for in situ investigations, and all that combined with a lower radiation dose for the patient. In collaboration with the group of Prof. P. Dorenbos from TU Delft we systematically investigated rare earth halides for their scintillation properties [5]. Among those, LaCl₃:Ce and LaBr₃:Ce are meanwhile commercially available as BriLaNeCe 350® and 390, respectively. The key-features of scintillators are high light output, fast response, good energy resolution, and high stopping power. After the investigation of AX₃ host lattices we looked for further alternatives. Going from AX₃ to AX₂ compounds results in higher density and therefore bigger stopping power. Also, an AX₂ has a smaller band gap than the respective AX₃ compound, where A is one of the rare earth elements stable in both the divalent and tervalent states. A smaller band gap generally increases the light output of a scintillator, i.e. the number of emitted photons per MeV incident energy. However, many AX₂ compounds undergo phase transitions. For a scintillator this may be a major drawback since most high-end applications require the material in form of big single crystals.

Phase transitions of AX₂ compounds have been thoroughly studied, e.g. for SiO₂, CaCl₂, and MgF₂ [6-8]. In the general sequence, the most important phases are quartz with coordination number (CN) 4, cristobalite, stishovite with CN 6, rutile, CaCl₂, α-PbO₂, SrI₂ with CN 7, CaF₂ with CN 8, and PbCl₂ with CN 9. Temperature and pressure determine the stability of a specific phase. An increase in temperature results in thermal expansion, i.e. decreasing density. Accordingly, a high temperature phase often shows a lower CN than its lower temperature neighbor. Pressure causes the opposite effect than temperature. Pressure compresses a compound, results in higher density, and often a higher CN is observed in a high pressure phase.

Among AX₂ systems YbBr₂ offers the quite unique opportunity to study 4 different phases just as function of temperature. For most other systems high pressure equipment is required to induce such a sequence of phase transitions. In this paper we report the structures, thermal expansion, phase stability ranges, and phase transition energies of YbBr₂ as obtained from a combination of neutron diffraction and differential scanning calorimetry (DSC).

EXPERIMENTAL

YbBr₂ was synthesized from YbBr₃ and Yb (99.99%, Metall Rare Earth Ltd.). YbBr₃ was prepared according to the ammonium halide method [9] from Yb₂O₃ (99.9999%, Metall Rare Earth Ltd.), HBr acid (Merck, suprapur), and NH₄Br (Merck, reinst, sublimed in air before use). For purification the YbBr₃ was sublimed in a vacuum-sealed silica ampoule at 950°C. The starting materials with a 5% excess of Yb were sealed in a tantalum ampoule by helium arc welding and jacketed in a silica ampoule under vacuum. The ampoule was heated to 980°C for 1 day and then the furnace switched off. Since rare earth halides are highly hygroscopic, all handling of materials was done in dry boxes (MBraun, Munich) with H₂O and O₂ < 0.2 ppm.
YbBr₂ was obtained as faint pink powder. The room temperature x-ray powder diffraction diagram showed the pattern of the SrI₂ phase without additional lines. Phase transitions were examined by DSC on a Mettler DSC823e. Samples of about 40 mg were measured in gas-tight gold crucibles. For neutron diffraction, a sample of 7 g was sealed under 0.25 bar helium in a tantalum tube of 8 mm diameter. Neutron diffraction patterns were measured on the DMC powder diffractometer at SINQ. The neutron wavelength was 2.4526 Å. The temperature was varied between 1.5 K and 980 K using a cryofurnace and an ILL-type furnace.

RESULTS AND DISCUSSION

Neutron powder diffraction patterns of the four solid phases of YbBr₂ are shown in Fig. 1 and their crystallographic data are summarized in Table 1. On heating, YbBr₂ transforms from the SrI₂ to the α-PbO₂, then to the CaCl₂, and finally to the rutile phase, see Fig. 2. In the low temperature SrI₂ structure Yb is surrounded by 7 Br atoms in the shape of a distorted mono-capped trigonal prism. All high temperature phases have a six-fold Yb coordination of more or less distorted octahedral shape. Accordingly, the SrI₂ to α-PbO₂ phase transition requires a major reorganiza-

(a) Space groups and lattice parameters

<table>
<thead>
<tr>
<th>T / K</th>
<th>phase</th>
<th>space group</th>
<th>Z</th>
<th>a / Å</th>
<th>b / Å</th>
<th>c / Å</th>
</tr>
</thead>
<tbody>
<tr>
<td>870</td>
<td>rutile</td>
<td>P42/mnm</td>
<td>2</td>
<td>6.8257(4)</td>
<td>6.8257(4)</td>
<td>4.4379(3)</td>
</tr>
<tr>
<td>750</td>
<td>CaCl₂</td>
<td>Pnnm</td>
<td>2</td>
<td>6.7630(5)</td>
<td>6.8707(5)</td>
<td>4.4223(3)</td>
</tr>
<tr>
<td>550</td>
<td>α-PbO₂</td>
<td>Pbcn</td>
<td>4</td>
<td>6.6934(5)</td>
<td>8.1392(6)</td>
<td>7.3274(5)</td>
</tr>
<tr>
<td>1.5</td>
<td>SrI₂</td>
<td>Pbca</td>
<td>8</td>
<td>13.669(1)</td>
<td>7.3085(8)</td>
<td>7.0352(8)</td>
</tr>
</tbody>
</table>

(b) Atomic positions

<table>
<thead>
<tr>
<th>T / K</th>
<th>phase</th>
<th>atom</th>
<th>x / a</th>
<th>y / b</th>
<th>z / c</th>
</tr>
</thead>
<tbody>
<tr>
<td>870</td>
<td>rutile</td>
<td>Yb</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Br</td>
<td>0.3033(6)</td>
<td>0.3033(6)</td>
<td>0</td>
</tr>
<tr>
<td>750</td>
<td>CaCl₂</td>
<td>Yb</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Br</td>
<td>0.2875(9)</td>
<td>0.3194(9)</td>
<td>0</td>
</tr>
<tr>
<td>550</td>
<td>α-PbO₂</td>
<td>Yb</td>
<td>0</td>
<td>0.3466(6)</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Br</td>
<td>0.2613(8)</td>
<td>0.1075(9)</td>
<td>0.0786(7)</td>
</tr>
<tr>
<td>1.5</td>
<td>SrI₂</td>
<td>Yb</td>
<td>0.1108(2)</td>
<td>0.4511(4)</td>
<td>0.2746(5)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Br</td>
<td>0.2037(5)</td>
<td>0.1136(9)</td>
<td>0.1591(9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Br</td>
<td>−0.0310(4)</td>
<td>0.262(1)</td>
<td>0.008(2)</td>
</tr>
</tbody>
</table>

Table 1: Crystallographic data of YbBr₂ in the SrI₂, α-PbO₂, CaCl₂, and rutile phases.
Figure 1: Neutron powder diffraction patterns of YbBr₂ in the SrI₂, α-PbO₂, CaCl₂, and rutile phases.

Figure 2: Crystal structures of the YbBr₂ phases.
tion of the ions. For the high temperature phases the connectivity remains the same along the series but distances and angles between the ions change. The YbBr$_6$ octahedra share trans-edges to form chains. Furthermore, the equatorial Br atoms act as apices to neighboring chains and form a three-dimensional network according to the Niggli-formula YbBr$_{6/3}$. In the α-PbO$_2$ to CaCl$_2$ phase transition the tilts of the octahedra along the chain disappear and the unit cell reduces to half its size due to the higher symmetry. Finally, the CaCl$_2$ to rutile transition involves a slight rotation of the octahedral chains parallel to the c-axis. It puts the equatorial planes of neighboring chains perpendicular to each other and establishes a tetragonal symmetry, cf. Table 1.

In the diffraction measurements, the SrI$_2$ phase was detected between 1.6 K and 550 K, the α-PbO$_2$ phase from 260 K to 750 K, the CaCl$_2$ phase between 690 K and 790 K, and the rutile phase from 790 K to the melting point at 955 K (682°C), see Fig. 3. Obviously, the SrI$_2$ to α-PbO$_2$ and the α-PbO$_2$ to CaCl$_2$ phase transitions are of 1$^{\text{st}}$ order and exhibit wide hystereses in temperature. On heating the phases are stable to the upper and on cooling down to the lower temperature limits mentioned above. Due to the structural rearrangements from seven- to six-fold coordination the molar volume changes by more than 9% for the 1$^{\text{st}}$ transition. This is detrimental for crystal growth since the material breaks up into powder passing through that transition. In contrast to the previously discussed ones, the CaCl$_2$ to rutile phase transition is 2$^{\text{nd}}$ order, i.e. fully reversible and without discontinuity in molar volume. The continuous merging of the orthorhombic a- and b-axes towards a common tetragonal a-axis can nicely be followed in Fig. 4, where the temperature dependent changes of lattice parameters are displayed. The rutile to melt phase transition is again 1$^{\text{st}}$ order, i.e. the crystallization occurs at lower temperature than the melting. In DSC measurements, see Fig. 5, a super-cooling of the melt by typically 50 K was observed whereas it was only about 20 K in case of the neutron experiments. These values strongly depend on experimental conditions as cooling rate and sample mass.

DSC measurements confirmed the temperatures of the phase transitions, see Fig. 5, and furthermore yield the transition enthalpies. On heating, endothermic effects of 1409 J/mol and 803 J/mol were observed for the SrI$_2$ to α-PbO$_2$ and the α-PbO$_2$ to CaCl$_2$ phase transitions, respectively. The CaCl$_2$ to rutile phase transition causes no effect in DSC since it is 2$^{\text{nd}}$ order. The melting enthalpy amounts to 19.075 kJ/mol. As discussed above, the 1$^{\text{st}}$ order phase transitions show a hysteresis. These amount to 50 K, 60 K, and 290 K for the crystallization, the CaCl$_2$ to α-PbO$_2$, and

![Figure 3: Molar volume of YbBr$_2$.](image)
the α-PbO$_2$ to SrI$_2$ phase transitions, respectively. On cooling, the α-PbO$_2$ to SrI$_2$ phase transition is kinetically hindered. It is spread over a temperature interval of more than 50 K and occurs as many individual peaks, see Fig. 5. Again, this reflects the big structural changes accompanied with that transition.

The availability of YbBr$_2$ and YbBr$_3$ from the present work initiated further studies on ytterbium bromides. Recently, Butman et al. investigated the composition of the saturated vapor over ytterbium bromides by high temperature mass spectroscopy [10] as well as the formation enthalpies of these molecules and ions [11].

SUMMARY

The combination of powder neutron diffraction and DSC measurements allowed a thorough characterization of the various solid phases of YbBr$_2$ and the phase transitions between them. Several of those 1$^{\text{st}}$ and 2$^{\text{nd}}$ order, ‘normal’, kinetically hindered, or fully reversible transitions can be regarded as textbook examples. The phase transitions prohibit a growth of YbBr$_2$ crystals and thereby most probably any further technical application. However, the knowledge about YbBr$_2$ contributes to the overall basic understanding of the series of AX$_2$ phase transitions.
REFERENCES

The European Crystallographic Association (ECA) and The European Neutron Scattering Association (ENSA) jointly award the Fourth Erwin Félix Lewy-Bertaut Prize to Dr. Christian Rüegg for his outstanding contributions to the science of low-dimensional quantum spin systems and quantum phase transitions, notably for his neutron scattering studies of the spin-$\frac{1}{2}$ system ACuCl3 ($A = K, Ti, NH4$) and the discovery of Bose Condensation in such systems. The prize was given to Dr. Rüegg during ECNS 2011 in Prague.
Winner of the Walter Hälg Prize (June 2011)

It is a great pleasure to inform you about the outcome of the Selection Committee Meeting for the Walter Hälg Prize on June 23rd 2011: The next recipient of the Walter-Hälg-Prize is Dr. Gerry Lander. The committee awarded Dr. Gerry Lander the prize because of his many groundbreaking scientific achievements mostly in the field of the magnetism of the actinides and his outstanding contributions to the development of neutron sources, in particular his scientific leadership making IPNS the basis for the spallation neutron sources to become the neutron sources of the future. The prize was given to Dr. Lander during ECNS 2011 in Prague.

Dr. Gerry Lander (courtesy of Juliette Savin / NMI3)
Announcements

SGN/SSDN MEMBERS

Presently the SGN has 200 members. Online registration for new members of our society is available from the SGN website: http://sgn.web.psi.ch

SGN/SSDN ANNUAL MEMBER FEE

The SGN/SSDN members are kindly asked to pay their annual member fees. The fee is still CHF 10.– and can be paid either by bank transfer or in cash during your next visit at PSI. The bank account of the society is accessible for both Swiss national and international bank transfers. The coordinates are as follows:
Postfinance: 50-70723-6 (BIC: POFICHBE), IBAN: CH39 0900 0000 5007 0723 6

PSI FACILITY NEWS

PSI launched a quarterly electronic newsletter featuring recent news, events and scientific highlights of the three major PSI user facilities SLS, SINQ and SμS. The online version of the recent edition is available here: http://www.psi.ch/info/facility-news

SINQ CALL FOR PROPOSALS

The next deadline for the submission of beam time requests for the Swiss spallation neutron source ’SINQ’ (http://sinq.web.psi.ch) will be: November 15, 2011

JUM@P ‘11 USERS’ MEETING

The second joint users’ meeting of SINQ, the Swiss Muon Source SμS, and the Swiss Light Source SLS will take place September 15–16 at PSI. Information about the meeting is available under:
http://indico.psi.ch/event/jump11

SGN/SSDN GENERAL ASSEMBLY

This year’s SGN/SSDN general assembly will take place at PSI on:
November 4, 2011, 17:00 in the Auditorium WHGA/001

NEUTRON BEAMTIME AT SNS FOR THE SWISS NEUTRON COMMUNITY

An actively shielded 16 Tesla magnet has been realized at the Spallation Neutron Source SNS in Oak Ridge, USA, as a collaboration of the
Swiss neutron community and SNS. In return, beam time is available at SNS for Swiss users. Swiss neutron scatteres are therefore encouraged to apply for beamtime at SNS.

REGISTRATION OF PUBLICATIONS

Please remember to register all publications either based on data taken at SINQ, SLS, SμS or having a PSI co-author to the Digital User Office: https://duo.psi.ch. Please follow the link ‘Publications’ from your DUO main menu.

OPEN POSITIONS AT ILL

To check the open positions at ILL please have a look at the following ILL-Webpage: http://www.ill.eu/careers

SWISS PHD POSITION AT ILL

ILL funds and hosts one PhD student from Switzerland. This position had become vacant, was advertised in fall 2010, and has been awarded to Dr. Ch. Rüegg and Prof. J. Mesot in cooperation with Dr. M. Enderle at ILL for a project on Quantum and Frustrated Magnetism.
JUM@P ’11
Joint Users’ Meeting at PSI 2011

2nd Joint Users’ Meeting at PSI: JUM@P’11
September 15–16, 2011
Paul Scherrer Institut, Villigen, Switzerland

Scope
The Paul Scherrer Institute runs three major user facilities for condensed matter research on one campus: The Swiss Light Source SLS, the Swiss Spallation Neutron Source SINQ and the Swiss Muon Source SμS.

The aim of the Joint Users’ Meetings @ PSI is to bring together the three user communities and to generate new synergies among the scientists.

Program
Plenary session
Poster session
Award of PSI Thesis Medal 2011

Topical workshops:
• Heterogeneous Catalysis
• XFEL Experiments in Condensed Matter
• Advancing Quantitative Chemical Imaging
• Resonant Inelastic and Elastic X-ray Scattering
• Multiple Order Parameter Systems
• Soft Condensed Matter
• Imaging

Registration: http://indico.psi.ch/event/jump11
Contact: useroffice@psi.ch

Deadlines
Abstract submission: July 10, 2011
Registration: August 15, 2011
(an updated list with online links can be found here: http://www.psi.ch/useroffice/conference-calendar)

SEPTEMBER

• 9th International NCCR Symposium on New Trends in Structural Biology
 September 1-2, 2011, Zürich, Switzerland

• ISACS6: Challenges in Organic Materials & Supramolecular Chemistry
 September 2-5, 2011, Beijing, China

• ECMS 2011: 7th European Conference on Mineralogy and Spectroscopy
 September 4-7, 2011, Potsdam, Germany

• Diamond 2011: 22nd European Conference on Diamond, Diamond-Like Materials, Carbon Nanotubes and Nitrides
 September 4-8, 2011, Garmisch-Partenkirchen, Germany

• ISPMA 12: 12th International Symposium on Physics of Materials
 September 4-8, 2011, Prague, Czech Republic

• WIRMS: 6th International Workshop on Infrared Spectroscopy and Microscopy with Accelerator-Based Sources
 September 4-8, 2011, Trieste, Italy

• 24th European Conference on Biomaterials
 September 4-9, 2011, Dublin, Ireland

• ICOMAT-2011: International Conference on Martensitic Transformations
 September 4-9, 2011, Osaka, Japan

• IPAC 2011: Second International Particle Accelerator Conference
 September 4-9, 2011, San Sebastian, Spain

• ICXOM21: 21st International Congress on X-ray Optics and Microanalysis
 September 5-8, 2011, Campinas, SP, Brazil

• SHELX Workshop
 September 5-8, 2011, Göttingen, Germany

• YUCOMAT 2011: Thirteenth Annual Conference
 September 5-9, 2011, Herceg Novi, Montenegro
- 15th JCNS Laboratory Course Neutron Scattering
 September 5-16, 2011, Juelich and Garching, Germany

- 12th Oxford School on Neutron Scattering
 September 5-16, 2011, Oxford, UK

- EQSANS 2011: Introduction to the EQ-SANS
 September 6-7, 2011, Oak Ridge, TN, USA

- ACCMS-6: 6th Conference of the Asian Consortium on Computational Materials Science
 September 6-9, 2011, Biopolis, Singapore

- Powder Diffraction at Australia’s Synchrotron and OPAL Facilities: Experiment Planning to Data Analysis
 September 6-9, 2011, Melbourne, Australia

- MECA SENS VI: 6th International Conference on Stress Evaluation using Neutrons and Synchrotron Radiation
 September 7-9, 2011, Hamburg, Germany

- ACIN 2011: International Symposium on Advanced Complex Inorganic Materials
 September 11-14, 2011, Namur, Belgium

- Recent Advances in Macromolecular Crystallization 2011
 September 11-14, 2011, Le Bischenberg, Strasbourg, France

- NOMAD 2011 – Nanoscale Ordered Materials Diffractometer Workshop
 September 12-13, 2011, Oak Ridge, TN, USA

- Euromat 2011 – Advanced Materials and Processes
 September 12-15, 2011, Montpellier, France

- Summer School on Application of Neutrons and Synchrotron Radiation in Engineering Materials Science
 September 12-16, 2011, Lauenburg, Germany

- ISIC18: 18th International Symposium on Industrial Crystallization
 September 13-16, 2011, Zürich, Switzerland

- HAXPES 2011: 4th International Workshop on Hard X-ray Photoelectron Spectroscopy
 September 14-16, 2011, Hamburg, Germany

- International Meeting on Materials for Electronic Applications 2011
 September 14-16, 2011, Agadir, Morocco

- JUM@P 11: Second Joint Users Meeting at PSI
 September 15-16, 2011, Villigen, Switzerland

- SGK/SSCr Annual Meeting
 September 16, 2011, Bern, Switzerland
• DyProSo XXXIII: 33rd International Symposium on Dynamical Properties of Solids
 September 18-22, 2011, Aussois, France

• 40th Congress of the Italian Crystallography Association
 September 19-22, 2011, Siena, Italy

• Joint Meeting of the German Crystallographic Society (DGK), German Mineralogical Society (DMG) and Austrian Mineralogical Society (ÖMG)
 September 20-24, 2011, Salzburg, Austria

• ICFPE2011: 2011 International Conference on Flexible and Printed Electronics
 September 22-23, 2011, Tokyo, Japan

• From Elementary Chemical Processes to Complex Biological Structures for the Benefit of Life and Human Health
 September 23, 2011, Florence, Italy

• 19th Bruker-Nonius CCD Users Group Meeting
 September 25-27, 2011, Madison, WI, USA

• DRIP XIV: International Conference of Defects – Recognition, Imaging and Physics in Semiconductors
 September 25-29, 2011, Miyazaki, Japan

• IX Krajowe Sympozjum Uzytkownikow Promieniowania Synchrotronowego
 September 26-27, 2011, Warsaw, Poland

• 25th Rhine-Knee Regional Meeting on X-ray Crystallography of Biomacromolecules
 September 28-30, 2011, Sursee, Switzerland

• HEC-14: 14th Heart of Europe bio-Crystallography Meeting
 September 29 - October 1, 2011, Zagan, Poland

• Neutron Diffraction at TOPAZ
 September 29 - October 1, 2011, Oak Ridge, TN, USA

OCTOBER

• Geometry of Interfaces
 October 3-7, 2011, Primosten, Croatia

• 8th Autumn School on X-ray Scattering from Surfaces and Thin Layers
 October 4-7, 2011, Smolenice, Slovakia

• JCNS workshop 2011: Neutron instrumentation – from continuous to spallation sources
 October 4-7, 2011, Tutzing, Germany

• GISAXS2011
 October 10-12, 2011, Hamburg, Germany

• Science Vision for the ESS – German Perspectives
 October 10-12, 2011, Bad Reichenhall, Germany
• Handheld XRF Workshop
 October 11-13, 2011, Newtown Square, PA, USA

• ADD 2011: Workshop on Analysis of Diffraction Data in Real Space
 October 12-14, 2011, Grenoble, France

• Reflektometrie an der ESS – Anforderungen und Perspektiven
 October 13, 2011, Bad Reichenhall, Germany

• Workshop on Energy Management in Large Scale Facilities
 October 13-14, 2011, Lund, Sweden

• Basic Rietveld Refinement and Indexing
 October 17-19, 2011, Newtown Square, PA, USA

• Advanced Rietveld Refinement and Indexing
 October 20-21, 2011, Newtown Square, PA, USA

• IUBMB: 13th International Union of Biochemistry and Molecular Biology Conference
 October 22-27, 2011, Merida, Yucatan, Mexico

• ESF-COST High-level Research Conference on Systems Chemistry III
 October 23-28, 2011, Crete, Greece

• Workshop on Topological Materials
 October 26-28, 2011, Grenoble, France

• Celebrating the 40th Anniversary of the Protein Data Bank
 October 28-30, 2011, Cold Spring Harbor, NY, USA

NOVEMBER

• AACr 2011: VII Reunion de la Asociacion Argentina de Cristalografia
 November 2-4, 2011, Bariloche, Rio Negro, Argentina

• MaThCryst Workshop on Mathematical Crystallography
 November 2-6, 2011, Manila, Philippines

• ISCAN 2011: International Symposium on Clusters and Nano-Structures
 November 7-10, 2011, Richmond, VA, USA

• III ESAACris: 3rd International School of the Argentinian Crystallography Association
 November 7-18, 2011, Bariloche, Rio Negro, Argentina

• 9th TOPAS Users’ Meeting with hands-on sessions
 November 8-11, 2011, Bad Herrenalb, Germany

• School of Crystallization and Crystallography for Latin America
 November 12-25, 2011, Florianopolis, Brazil
• EMBO Practical Course: Computational Structural Biology
 November 14-18, 2011, Cambridge, UK

• 1st AOCNS: 1st Asia-Oceania Conference on Neutron Scattering
 November 20-24, 2011, Tsukuba, Japan

• VIII International School on Crystallography and X-ray Diffraction
 November 21-26, 2011, Havana, Cuba

• ICAM workshop: New frontiers in the physics of two dimensional electron systems
 November 23-25, 2011, Buenos Aires, Argentina

• 2011 MRS Fall Meeting and Exhibit
 November 28 - December 2, 2011, Boston, MA, USA

• Workshop on Perspectives in Terahertz Spectroscopy with Neutrons
 November 29-30, 2011, Berlin, Germany

• Solomonoff 85th Memorial Conference
 November 30 - December 2, 2011, Melbourne, Australia

JANUARY 2012

• 7th SOLEIL Users’ Meeting
 January 18-19, 2012, Soleil Synchrotron, Gif sur Yvette, France

• 6th International Symposium Hydrogen and Energy
 January 22-27, 2011, Stoos, Switzerland

APRIL 2012

• ARRS 2012: Meeting of the American Roentgen Ray Society
 April 29 - May 4, 2012, Vancouver, Canada

JUNE 2012

• ICCS 2012: International Conference on Computational Science
 June 4-6, 2012, Omaha, Nebraska, USA

JULY 2012

• Science at FEL's: SRI 2012 Satellite Metting
 July 15-18, 2012, Hamburg, Germany

NOVEMBER 2012

• SAS2012: International Small-Angle Scattering Conference
 November 18-23, 2012, Sydney, Australia